
Unstable relativistic quantum fields: two models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 12109

(http://iopscience.iop.org/0305-4470/36/48/013)

Download details:

IP Address: 171.66.16.89

The article was downloaded on 02/06/2010 at 17:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/48
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 12109–12127 PII: S0305-4470(03)65567-8

Unstable relativistic quantum fields: two models

I E Antoniou1,2, M Gadella1,3, J Mateo3 and G P Pronko1,4

1 International Solvay Institutes for Physics and Chemistry, CP 231, Campus Plaine ULB, Bd
du Triomphe, 1050 Brussels, Belgium
2 Theoretische Natuurkunde, Free University of Brussels, Belgium
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Abstract
We present two models of relativistic interactions in quantum mechanics that
produce resonances. In both cases, these resonances are described by poles of
the analytic continuations of Green functions in terms of the variable energy.
We develop the first model in detail and motivate and describe the second one.
We compare the common features between these two models. The analysis is
made in the context of quantum field theory.

PACS numbers: 03.65.Nk, 03.70.+k, 11.80.−m

1. Introduction

We have recently studied [1] an exactly solvable model for relativistic unstable quantum fields.
The model consists of a local scalar field ϕ in quadratic interaction with a bilocal scalar field
ψ with mass spectrum [M,∞). The resonance manifests itself as a pair of simple poles on
the analytic continuations, through the mass spectrum of ψ , of the Green function G(E, k) on
the energy E. Corresponding to these two resonance poles, we have constructed their Gamow
vectors, as eigenvectors of the energy operator P0 with eigenvalues given by the resonant
poles [1]. Since the poles are complex, the solution of the spectral equation involving them
cannot be found on the usual Fock space, but in two locally convex extensions of the Fock
space, one for each extension of G(E, k). This can be done using the theory of rigged Hilbert
spaces [2].

We have shown moreover that the unitary group given by the evolution operator
exp(−itP0) as in the case of nonrelativistic quantum mechanics [3–5] splits into two distinct
semigroups. This splitting confirms that the proposed model is intrinsically irreversible in the
sense of Prigogine [6].

The question about the physical content of an unstable field theory is similar to the same
question in other formalisms such as, say, QCD. Indeed in these theories, we can construct the
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Green functions with the help of the usual Feynman diagrams. However, we cannot construct
the elements of the S-matrix reasonably as we cannot obtain the space of true asymptotic
states. If we use as this space the naive Fock space of the fundamental fields which enter into
the Lagrangian, we obtain the infrared divergences in, e.g., QED or QCD. This is a signal
that the appropriate Green functions do not have the corresponding singularities on the mass
shell of the fundamental fields [7]. Here, we discuss the similarities of these questions for the
unstable field theory and the theories with massless fields and give the solution of the problem
of the definition of the space of true asymptotic states for unstable field theory.

Thus, the objective of the present paper is to provide more insight into the theory of
unstable relativistic quantum fields. Here, we shall present a new model of unstable interaction
between relativistic quantum fields which can be exactly solvable in one sector. We also shall
recall the example developed in [1] in order to compare it with the other model and complete
the discussion and motivation of this example, which is not included in [1].

The main object of conventional field theory is the Green function of interacting fields,
which is given by

G(x1, . . . , xn) = 〈0|T {
ϕi1(x1)ϕi2(x2) · · · ϕin(xn)

}|0〉 (1)

where |0〉 is the vacuum, T the time ordering operator and the ϕi(x) are Heisenberg fields. In
the interaction picture (Gell-Mann–Low representation), one has

G(x1, . . . , xn) = 〈0|T {
ϕi1(x1)ϕi2(x2) · · · ϕin(xn)S

}|0〉 (2)

where S is the operator defined by

S := T exp

{∫ ∞

−∞
dtHint(t)

}
. (3)

The Fourier transform of the Green function G(x1, . . . , xn) is

δ


 n∑

j=1

pj


 G(p1 · · · pn) =

∫
R

4n

dx1 · · · dxn exp


i

n∑
j=1

pj · xj


 G(x1, . . . , xn). (4)

The δ-function on the left-hand side of (4) reflects the energy–momentum conservation and it
arises because of the translation invariance of G(x1, . . . , xn), i.e.,

G(x1, . . . , xn) = G(x1 + a, . . . , xn + a) (5)

where a is an arbitrary 4-vector.
The elements of the S-matrix can be expressed via Green functions with the help of the

so-called Lehman–Symanzik–Zimmermann reduction formalism

S(p1 · · · pn) = (
p2

1 − m2
1

)(
p2

2 − m2
2

) · · · (p2
n − m2

n

)
G(p1 · · ·pn){

p2
i −→ m2

i

}
.

(6)

In other words, the S-matrix elements are the residues of the Green functions on the mass shell(
p2

i = m2
i

)
.

As a result, the S-matrix in the Fock space exists if and only if the Green functions
G(p1 · · ·pn) have only pole singularities with respect to all variables p2

i at the points m2
i

(which do not need to be identical to the bare masses of the particles).
If the Green functions have another kind of singularity (double pole, cut, etc) we cannot

define the S-matrix in the Fock space. In other words, if the Green functions do not have
a pole singularity with respect to the variables p2

i , by calculating the residue formally we
would obtain the zero result, i.e., the S-matrix would be identically zero. In perturbation
expansions, however, this zero may be seen as a divergence. In fact, infrared divergences are
manifestations of this kind of phenomenon.
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An analysis of the Fourier transform of G(p1 · · · pn) with pole singularities with respect
to the variables p2

i leads to the conclusion that for large spacetime separation (xi −xj �−→ ∞),
the Green function becomes

G(x1, . . . , xn) �−→ exp


 n∑

j=1

ikj · xj


 (7)

where k2
i = m2

i . Therefore, for large spacetime separation, the Green function becomes the
solution of the free field equation with respect to each coordinate, i.e., we have free evolution.
This implies that, in order that the Green function has the correct pole singularity (so that the
S-matrix does exist), the interaction should decrease sufficiently fast.

The difficulties in the S-matrix definition in the Fock space can also be seen in the
time-dependent Rayleigh–Schrödinger perturbation theory:

S := U(∞,−∞) (8)

where

U(t1, t2) = T exp

[
−i

∫ t1

t2

dt V (t)

]
. (9)

Here, V (t) is the perturbation in the interaction representation, with respect to the usual
separation of the total Hamiltonian

H = H0 + V. (10)

The S-matrix defines the transition amplitude T by

Sαβ = δαβ + 2π iδ(Eβ − Eα)Tαβ. (11)

From the definition of the S-matrix, we have

S = 1 + (−i)
∫ ∞

−∞
dt V (t) + (−i)2

∫ ∞

−∞
dt1

∫ t1

−∞
dt2 V (t1)V (t2) + · · · . (12)

The time dependence of V (t) in the interaction picture is given by

〈a|V (t)|b〉 = exp(i(Ea − Eb)t)〈a|V (0)|b〉 (13)

where |a〉 is the eigenvector of H0 with eigenvalue Ea . Thus, the transition amplitudes are

Tba = Vba +
∫

dc
VbcVca

Ea − Ec + iε
+

∫
dc1

∫
dc2

Vbc2Vc2c1Vc1a(
Ea − Ec1 + iε

)(
Ea − Ec2 + iε

) + · · · . (14)

Here

Vba := 〈b|V (0)|a〉 (15)

and the integration over intermediate states also involves summation over discrete quantum
numbers.

The denominators in equation (14) arise due to the integration over an infinite interval
of time. Sometimes these denominators may become small, giving rise to divergences of
some matrix elements of T. These divergences are obviously connected with a slow decrease
of V (t). From the point of view of the expansion of Tba , we may also say that these small
denominators are the manifestation of degeneracies of intermediate states with initial or final
states. There are two types of such dangerous degeneracies:

(i) the degeneracy due to zero photon mass gives rise to the so-called infrared divergences in
QED [8].
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(ii) the degeneracy due to broken stability conditions. Here we mean the following: consider
an unstable particle with mass M. Its energy will be given by (M2 + k2)1/2. Suppose that
field theory allows this particle to decay into two other particles with masses m1 and m2.
For that we need the energy momentum balance:

(M2 + k2)1/2 = (
m2

1 + k2
1

)1/2
+

(
m2

2 + k2
2

)1/2
k = k1 + k2.

This problem leads to the famous so-called Poincaré problem of small denominators
[9, 10] and in this paper we are going to give a detailed example: how we have to modify the
scattering theory in order to overcome this difficulty.

2. The model and its asymptotic dynamics

Most models of interaction in quantum field theory cannot be solved exactly but only
approximately. Thus the question arises whether the above-mentioned formalism can be
applied to situations in which approximate solutions to field equations are all that we can have.
In order to see that the answer must be positive, we propose the following model involving
two real scalar relativistic quantum fields ϕ(x) and ψ(x), with respective masses m and M,
coupled with the simplest cubic interaction. Thus, the Hamiltonian of the system is given by

H = Hm + HM + V (16)

where

HM =
∫

dx(ψ̇2 + (∇ψ)2 + M2ψ2) (17)

Hm =
∫

dx(ϕ̇2 + (∇ϕ)2 + m2ϕ2) (18)

V = λ

∫
dx ψ(x)ϕ2(x). (19)

The dot means first derivative with respect to time. By boldface letters we denote three-
dimensional vectors. Four-dimensional vectors in Minkowski space are denoted by roman
style letters. The products of two 4-vectors as well as the scalar products of two 3-vectors
are denoted by a dot. We use the standard metric (+,−,−,−) of Minkowski space. As an
illustration of our notation, we write: k · x = k0x0 − k · x.

In terms of the creation and annihilation operators, the above formulae can be written in
the interaction picture as

Hm =
∫

dq̃ ρ(q)b†(q)b(q) (20)

HM =
∫

dk̃ ω(k)a†(k)a(k) (21)

VI (t) = λ

∫
dk̃ dq̃1 dq̃2

∫
d3x[a†(k) exp(ik · x) + a(k) exp(−ik · x)][b†(q1) exp(iq1 · x)

+ b(q1) exp(−iq1 · x)][b†(q2) exp(iq2 · x) + b(q2) exp(−iq2 · x)]. (22)

The quantum field operators in (17)–(19) are

ψ(x, t) =
∫

dk̃[a†(k) exp(ik · x) + a(k) exp(−ik · x)]

ϕ(x, t) =
∫

dq̃[b†(q) exp(iq · x) + b(q) exp(−iq · x)]
(23)
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with the Lorentz invariant measure

dk̃ = d3k
(2π)32ω(k)

ω(k) = (k2 + M2)1/2

dq̃ = d3q
(2π)32ρ(q)

ρ(q) = (q2 + m2)1/2.

(24)

The creation and annihilation operators in (20)–(22) satisfy the usual commutation relations

[a(k), a†(k′)] = (2π)32ω(k)δ(k − k′)

[b(q), b†(q′)] = (2π)32ρ(q)δ(q − q′).
(25)

Scattering theory applies if asymptotic completeness holds true between the free and the
interacting fields [11]. If this assumption is not valid one tries to find another solvable evolution
which satisfies the asymptotic condition and re-establish scattering theory as a comparison
between the interaction field and the redefined asymptotic field. A typical example is the
Faddeev–Kulish [12] removal of infrared divergences.

After integration over the three-dimensional space on the rhs of (22) we obtain eight-terms
of products of creation and annihilation operators with t-dependent exponents accomplished
with three-dimensional δ-functions of momentum conservation. According to the Riemann–
Lebesgue lemma [13], the asymptotic behaviour of VI (t) is defined by the behaviour of these
t-dependent exponents in the integration domain. For example, one of the terms on the rhs of
(22) is

λ

∫
dk̃ dq̃1 dq̃2 a†(k)b†(q1)b

†(q2) exp(i[ω(k) + ρ(q1) + ρ(q2)]t)(2π)3δ(k + q1 + q2). (26)

The asymptotic behaviour of the integral (26) as t → ±∞ is determined by the term
[ω(k) + ρ(q1) + ρ(q2)]. Note that

ω(k) + ρ(q1) + ρ(q2)|k+q1+q2=0 � M + 2m > 0. (27)

The integral (26) goes rapidly to zero due to the fast oscillations (indeed to the Riemann–
Lebesgue lemma). Let us consider another term∫

dk̃ dq̃1 dq̃2 a†(k)b(q1)b(q2) exp(i[ω(k) − ρ(q1) − ρ(q2)]t)(2π)3δ(k − q1 − q2). (28)

Again, the asymptotic behaviour of (28) is defined by the quantity

�(k, q1) = ω(k) − ρ(q1) − ρ(q2)|k−q1−q2=0. (29)

The values of �(k, q1) depend on the masses of the fields ϕ and ψ . If M < 2m, then
�(k, q1) is strictly negative:

�(k, q1) � 2

(
m2 +

k2

4

)1/2

− (M2 + k2)1/2 < 0. (30)

To show (30), we obtain the maximum of �(k, q1) on q1 for each k. This maximum is at
q1 = k/2 (it is certainly a maximum) and the value of �(k, q1) at the maximum is

2

(
m2 +

k2

4

)1/2

− (M2 + k2)1/2. (31)

Note that if M < 2m, (31) is indeed smaller than zero. Thus, �(k, q1) has constant sign
and therefore the Riemann–Lebesgue lemma applies. As a consequence, the integral (28)
decreases fast as t �−→ ±∞.
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In contrast, let us assume that M > 2m. Then the maximum (31) is bigger than zero.
However, for fixed k the term

�(k, q1) = (M2 + k2)1/2 − (
m2 + q2

1

) − (m2 + (q1 − k)2)1/2 (32)

is obviously smaller than zero for high values of |q1|. Let us consider the manifold for which

�(k, q1) = 0. (33)

The integral (28) over this region does not vanish asymptotically and the same behaviour
can be observed for its complex conjugate. In other words, by relinquishing the stability
condition M < 2m, we obtain an unstable field theory where the asymptotic condition for
scattering theory fails. Therefore, following the standard procedure, we redefine the asymptotic
evolution in the interaction picture as follows:

has = H0 + Vas(t) (34)

where Vas includes the slowly decreasing part of VI . There is an ambiguity in the definition of
Vas and we shall take it as the sum of (28) and its complex conjugate, so that Vas is Hermitian.
This is the simplest choice for Vas:

Vas(t) = λ

∫
dk̃ dq̃1 dq̃2[a†(k)b(q1)b(q2) exp(i�(k, q1)t)

+ a(k)b†(q1)b
†(q2) exp(−i�(k, q1)t)](2π)3δ(k − q1 − q2)

= λ

∫
d3x[ψ+(x)ϕ(−)2(x) + ψ(−)(x)ϕ(+)2(x)] (35)

where � was defined in (29) and ϕ(+), ϕ(−) denote the positive and negative frequency parts
of ϕ. Same for ψ .

We would like to make a few comments here.

(1) The above comments have an obvious physical interpretation: the decay process given by

ψ �−→ ϕ + ϕ

is only possible if the mass M of the ψ-particle is bigger than the mass 2m corresponding
to two ϕ-particles.

(2) Renormalization. As we shall see below the has produces a ultraviolet divergence in
the equation for its eigenstates. In order to remove this divergence we add to has the
appropriate counterterm

Hc.t. = 1

2

∫
d3x δM2ϕ(+)(x)ϕ(−)(x) =

∫
dk

δM2

ω(k)
a†(k)a(k) (36)

where the mass renormalization δM2 is of order λ2. The appearance of ultraviolet
counterterms is due to our choice of asymptotic interaction. We can of course introduce
some smooth cut off in Vas, but it will involve additional parameters to the asymptotic
states and it will generally break the relativistic invariance of the system.

(3) Relativistic invariance. The asymptotic system should be constructed so that it defines
a representation of the Poincaré group given by the generators

(
P

µ
as, J

µν
as

)
. Here Has, P

k
as

and J
µν
as are the generators of the Poincaré algebra [11]. Needless to say, in general, an

arbitrary choice for Has does not respect the Lorentz invariance.
The construction of the asymptotic form of the Poincaré generators could be done

perturbatively with respect to the coupling parameter λ.



Unstable relativistic quantum fields: two models 12115

(4) Connection with realistic models. The quantum field theory we are considering here is
a simplified version of the more realistic standard model. In the standard model, the
Z-boson and the W -boson become unstable, due to many open decay channels. In our
model however we restrict ourselves to scalar particles.

In order to obtain the desired formula for the asymptotic Hamiltonian, we add has and
Hc.t.:

Has(t) = has(t) + Hc.t.. (37)

In the Schrödinger picture, the time-dependent exponents exp(±i�(k, q1)t) in
equation (35) disappear. Now, we shall consider the eigenstates of Has = Has(0), which is a
Hermitian operator in the Fock space corresponding to the creation and annihilation operators
satisfying (25).

From now on, we shall work in the Schrödinger picture, in order to make calculations
easier. In the Schrödinger picture the total Hamiltonian H will be the following:

Has = HM + Hm + Hc.t. + λ

∫
dk̃ dq̃1 dq̃2[a†(k)b(q1)b(q2)

+ a(k)b†(q1)b
†(q2)](2π)3δ(k − q1 − q2). (38)

3. The solutions of the eigenvalue problem

We shall show how the above problem of an unstable quantum field can be solved exactly on a
sector. Of course, as the interaction is not quadratic, no exact solution is known for all sectors.
This sector corresponds to the decay of one ψ-particle into two ϕ-particles. The Hilbert space
of this system is given by

H := Hϕ ⊗ Hϕ ⊕ Hψ. (39)

The eigenspaces of the operator

N = Nψ + 2Nϕ (40)

are invariant subspaces of Has. The operators Nψ and Nϕ are the number operators of ψ- and
ϕ-particles. The asymptotic interaction does not affect the vacuum state and the one ψ-particle
state, which are the only nondegenerate eigenspaces of N. The first degenerate case is the
eigenspace of N with eigenvalue 2, which is precisely H as given in (39). In the subspace (39)
the term Vas in Has produces transitions of two ϕ-particle states to one ψ-particle and vice
versa. We should mention that not every two ϕ-particle states will mix with one ψ-particle
state, but only with those in which the two ϕ-particles are in the S-wave state. The three-
dimensional rotation and translation invariance, which is respected by Has, permits us to write
the two ϕ-particle S-wave state in the form

|ε, k〉 =
∫

dq̃1 dq̃2 δ(ε − ρ(q1) − ρ(q2))δ(k − q1 − q2)|q1q2〉 (41)

where

|q1, q2〉 = 1√
2
b†(q1)b

†(q2)|0〉 (42)

and q̃1, q̃2 are defined in (24). The ‘δ-function normalization’ for |ε, k〉 is

〈k′, ε′|k, ε〉 = δ3(k − k′)δ(ε − ε′) · τ(ε2 − k2). (43)
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The function τ is defined on the halfline ε > (4m2 + k2)1/2 by

τ(ε2 − k2) =
∫

dq̃1 dq̃2 δ(k − q1 − q2)δ(ε − ρ(q1) − ρ(q2))

= 1

4(2π)5

(
1 − 4m2

ε2 − k2

)1/2

θ(ε − (4m2 + k2)1/2) (44)

where θ(x) is the usual Heaviside step function.
The most general linear combination of two ϕ-particles in the S-wave state with one

ψ-particle can now be written as

�(E, k) = f (E, k)|k〉 +
∫

dE′f (E,E′, k)|E′, k〉 (45)

where |k〉 is the one ψ-particle state. The equation

(Has − E)�(E, k) = 0 (46)

gives a system of two equations for the functions f (E, k) and f (E,E′, k), where

Has = H1 + Vas(t) (47)

with

H1 := HM + Hm + Hc.t. (48)

and use for Hc.t. the expression given at the right in (36).
Our objective is to obtain the equations for f (E, k) and f (E,E′, k). Noting that

a(k′)|k〉 = (2π)3δ(k − k′)ω(k)|0〉 (49)

we obtain that

(H1 − E)|k〉 =
(

ω(k) − E +
δM2

ω(k)

)
|k〉. (50)

It remains to calculate the action of Vas(t) on |k〉. As we are working in the Schrödinger
representation, we shall use for Vas(t) the expression written in the second line of (38). Observe
that this expression is a sum of two terms. The first term contains the annihilation operators
b(q1) and b(q2) that give a vanishing contribution when applied to |k〉. The second term
includes the operators a(k), b†(q1) and b†(q2) and therefore gives a nonvanishing contribution
on |k〉. Taking (49) into account, we have for Vas(t)|k〉:
√

2λ

∫
dk̃′ dq̃1 dq̃2

1√
2
b†(q1)b

†(q2)(2π)6δ(k′ − q1 − q2)δ(k − k′)ω(k)|0〉

=
√

2λ

∫
dk̃ dq̃1 dq̃2(2π)6δ(k − q1 − q2)ω(k)|q1, q2〉

= λ
√

2

2
(2π)3

∫
dq̃1 dq̃2 δ(k − q1 − q2)|q1, q2〉 (51)

where in the second identity in (51), we have made use of (24). Now, let us take (41) and
integrate it over the values of the energy. Then, we have∫

|E′, k〉 dE′ =
∫

dq̃1 dq̃2 dE′δ(k − q1 − q2)δ(E
′ − ρ(q1) − ρ(q2))|q1, q2〉

= λ
√

2

2
(2π)3

∫
dq̃1 dq̃2 δ(k − q1 − q2)|q1, q2〉. (52)
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Comparing (51) and (52), we conclude that

Vas(t)|k〉 = λ
√

2

2
(2π)3

∫
|E′, k〉 dE′. (53)

Now, let us apply Has − E to the integral term of (45). It is straightforward to prove that

Hm|E′, k〉 = E′|E′, k〉 (54)

and

HM |E′, k〉 = 0. (55)

The proof for the eigenvalue equations (54) and (55) is based on commutation relations (25)
and the form (41), (42) of |E′, k〉.

The next step is to apply Vas to the integral term in (45). Obviously, the term of Vas

containing a(k)b†(q1)b
†(q2) gives zero when applied to this term, due to the presence of the

annihilation operator a(k). The other term gives

λ

∫
dk̃′ dq̃1 dq̃2 dE′(2π)3δ(k′ − q1 − q2)a

†(k′)b(q1)b(q2)

× f (E,E′, k) dq̃′
1 dq̃′

2δ(E
′ − ρ(q′

1) − ρ(q′
2))

× δ(k − q′
1 − q′

2)
1√
2
b†(q′

1)b
†(q′

2)|0〉. (56)

Commutation relations (25) give

b(q1)b(q2)b
†(q′

1)b
†(q′

2) = (2π)64ρ(q1)ρ(q2)[δ(q1 − q′
1)δ(q2 − q′

2)

+ δ(q1 − q′
2)δ(q2 − q′

1)] + T (57)

where T denotes the sum of all terms including a destruction operator to the right so that,
when it acts on the vacuum state |0〉, it gives the zero vector. With this in mind, along with
the definitions (24) and the fact that a†(k|0〉 = |k〉, equation (56) gives

λ√
2

∫
dk̃′ dq1q2(2π)3δ(k′ − q1 − q2) dE′[δ(q1 − q′

1)δ(q2 − q′
2)

+ δ(q1 − q′
2)δ(q2 − q′

1)]f (E,E′, k) dq̃′
1 dq̃′

2

× δ(E′ − ρ(q′
1) − ρ(q′

2))δ(k − q′
1 − q′

2)|k′〉. (58)

The integral in (58) is symmetric in the variables q1 and q2. Therefore, (58) is equal to

2λ√
2

∫
dk̃′ dq1q2(2π)3δ(k′ − q1 − q2) dE′δ(q1 − q′

1)δ(q2 − q′
2)

× f (E,E′, k) dq̃′
1 dq̃′

2δ(E
′ − ρ(q′

1) − ρ(q′
2))δ(k − q′

1 − q′
2)|k′〉

= 2λ√
2

∫
dk̃′ dq̃1 dq̃2 dE′δ(k′ − q1 − q2)δ(k − q1 − q2)

× f (E,E′, k)δ(E′ − ρ(q′
1) − ρ(q′

2))|k′〉. (59)

Now, using the identity

δ(k′ − q1 − q2)δ(k − q1 − q2) = δ(k − k′)δ(k − q1 − q2) (60)

and integrating over k′, we finally get
√

2λ

2

1

ω(k)

∫
dE′f (E,E′, k)

[∫
δ(E′ − ρ(q′

1) − ρ(q′
2))δ(k − q1 − q2)

]
|k〉. (61)
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The expression between brackets in (61) is just τ(ε2 − k2) as in (44). Thus, (61) yields
√

2λ

2ω(k)

[∫
dE′f (E,E′, k)τ (ε2 − k2)

]
|k〉 = Vas

∫
dE′f (E,E′, k)|E′, k〉. (62)

Thus, we can obtain (Has − E)�(E, k) using (50), (53)–(55) and (62). The result is of
the form

(Has − E)�(E, k) = A(E, k)|k〉 +
∫

dE′B(E,E′, k)|E′, k〉 (63)

with

A(E, k) =
(

ω(k) − E +
δM2

ω(k)

)
f (E, k) +

√
2λ

2ω(k)

∫
dE′τ(E′2 − k2)f (E,E′, k) (64)

B(E,E′, k) = (E′ − E)f (E,E′, k) + λ
√

2(2π)3f (E, k). (65)

Then, from (45) and (46), we obtain the following system of two equations for the
functions f (E, k) and f (E,E′, k):

A(E, k) = 0 B(E,E′, k) = 0. (66)

This system is analogous to that in the Friedrichs model [14, 15]. In order to solve the system
given by (66), let us express f (E,E′, k) via f (E, k) using (65) and the last identity in (66).
The result is

f (E,E′, k) = Aδ(E′ − E) − λ
√

2(2π)3

E′ − E
f (E, k) (67)

where A is an arbitrary constant. Now let us use (67) in (64) and equate the result to zero.
This gives the following equation for f (E, k):[

ω(k) +
δM2

ω(k)
− E − λ2(2π)3

ω(k)

∫ ∞

E0

dE′ τ(E′2 − k2)

E′ − E

]
f (E, k) + A

λ
√

2

2ω(k)
τ (E2 − k2) = 0.

(68)

The function τ is defined by (44) in the half-line [E0,∞] with E0 = (4m2 + k2)1/2 and
this imposes the lower limit of integration in (68). The divergence of the integral due to the
upper limit is cancelled by the counterterm δM2:

Q(E, k) = λ2(2π)3
∫ ∞

E0

dE′ τ(E′2 − k2)

E′ − E
− δM2. (69)

The counterterm δM2 [16] is

δM2 = λ2(2π)3
∫ ∞

E0

dE′ τ(E′2 − k2)

E′ − a
. (70)

Therefore,

Q(E, k) = λ2(2π)3
∫ ∞

E0

dE′τ(E′2 − k2)

(
1

E′ − E
− 1

E′ − a

)

= λ2(2π)3(E − a)

∫ ∞

E0

dE′ τ(E′2 − k2)

(E′ − E)(E′ − a)
. (71)

The usual ‘on shell’ renormalization corresponds to a = ω(k), which after (69) and (71),
gives the zero value for the square brackets in (68). This choice is acceptable in the stable
case, M < 2m, where the point E = ω(k) is smaller than the branch point E0 of the function
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Q(E, k) and, therefore, lies outside the branch cut [E0,∞) of Q(E, k). With this choice, the
subtraction constant a in (70) is real.

In the unstable case, characterized by M > 2m, the counterterm δ2M is analytic in a with
a branch cut at [E0,∞). Then, the choice a = ω(k) produces a counterterm with an infinite
real part plus a nonvanishing imaginary part:∫ ∞

E0

τ(E′2 − k2)

E′ − ω(k) ± i0
= PV

∫ ∞

E0

τ(E′2 − k2)

E′ − ω(k)
dE′ ± iπ

∫ ∞

E0

δ(E′ − ω(k))τ (E′2 − k2) dE′

= ∞ ± iπτ(ω2(k) − k2) = ∞ ± iπτ(M2) (72)

where PV stands for the Cauchy principal value.
In this case, the choice of the counterterm as in (70) leads to a complex Hamiltonian (as

the counterterm is a part of the total Hamiltonian), which does not make sense. Therefore,
we should make another choice for the counterterm in order to avoid infinities. Note that if
E > E0, ∫ ∞

E0

τ(E′2 − k2)

(E′ − E) ± i0
= PV

∫ ∞

E0

τ(E′2 − k2)

E′ − ω(k)
± iπτ(E2 − k2) (73)

which suggests a normalization for Q(E, k) such that

Re Q(E, k)|E=ω(k) = 0. (74)

This normalization can be produced by a real counterterm as it affects the real part of (69) only
and is, therefore, acceptable. The function Q(E, k) defined in this way is an analytic function
with a cut on the real axis from the point E0 = (4m2 + k2)1/2 to infinity. Its discontinuity on
the cut is

1

2i
[Q(E + i0, k) − Q(E − i0, k)] = πλ2(2π)3τ(E2 − k2). (75)

Due to the normalization condition (74), the function in the square brackets in (68)

η(E, k) = ω(k) − E − Q(E, k)

ω(k)
(76)

has no zeros on the real axis of the complex E-plane. Therefore the general solution of (66) is
given by the following equation:

f (E, k) = −A
1

η(E, k)

λ
√

2

2ω(k)
τ (E2 − k2). (77)

Therefore, the second function f (E,E′, k) in (45) is also fixed:

f (E,E′, k) = A

{
δ(E′ − E) +

2λ2(2π)3

2ω(k)

τ (E2 − k2)

η(E, k)

1

E′ − E

}
. (78)

In both equations (77), (78) there is an ambiguity which arises due to the singular denominators
(E′ − E). Consequently, we shall define two solutions of eigenvalue problem (46) that
correspond to the incoming and the outgoing solution. The incoming and outgoing solutions
are defined as boundary functions of analytic functions from above (E + i0) and from below
(E − i0) the real axis respectively:

�
in

out (E, k) = A

{
|E, k〉 +

λ
√

2 · τ(E2 − k)

2ω(k)η(E ± i0, k)

×
[
λ
√

2(2π)3
∫ ∞

E0

dE′ 1

E′ − E ∓ i0
|E′, k〉 − |k〉

]}
. (79)
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This formula explicitly demonstrates that the energy spectrum of the asymptotic states in
the eigenspace of N, corresponding to the eigenvalue 2, is absolutely continuous over the
interval [E0,∞) where E0 = (4m2 + k2)1/2. The isolated eigenvalue associated with the one
ψ-particle state |k〉 has been dissolved to the continuum due to the interaction.

The partial resolvent of Has is

〈k| 1

Has − E
|k〉 = 1

η(E, k)
(80)

where

η(E, k) = ω(k) − E − 1

ω(k)
· Q(E, k)

= ω(k) − E − 1

ω(k)

[
Re Q(E, k) + i

λ2

16π

(
1 − 4m2

E2 − k2

)1/2

θ(E − E0(k))

]
.

(81)

We express the imaginary part of Q(E, k) using (44) and (69). With the normalization
condition (74), the real part of η(E, k) vanishes for E = ω(k), which obviously is not a zero
for η(E, k), since the imaginary part is different from zero at E = ω(k).

4. The Gamow vectors

From (76), we see that the inverse partial resolvent η(E, k) admits a continuation on the
variable E, η+(E, k), from above to below through the branch cut [E0,∞) and has a complex
zero zR on the lower half-plane. Now, we have to solve the equation η(E, k) = 0, or
equivalently:

E = ω(k) − 1

ω(k)

[
Re Q(E, k) + i

λ2

16π

(
1 − 4m2

E2 − k2

)1/2

θ(E − E0(k))

]
. (82)

In the absence of interaction (λ = 0), E = ω(E, k). Therefore, we can write for small values
of λ:

zR = ω(k) + λ2z1 + O(λ4).

We replace E by zR in equation (82) and expand both sides in terms of λ. Comparing the
coefficients of λ2, we have

z1 = − i

8π

(
1 − 4m2

ω2(k) − k2

)1/2

= − i

8π

(
1 − 4m2

M2

)1/2

.

Therefore,

zR = ω(k) − i
M�

2ω(k)
� (k2 + M2 − iM�)1/2 (83)

where we have denoted

M� = λ2

8π

(
1 − 4m2

M2

)1/2

. (84)

This zero has a complex conjugate on the analytic continuation from above to below.
Equation (83) demonstrates that the zero of η(E, k) corresponds to a particle with complex
square mass

M2
c = M2 − iM� (85)
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which is the remnant of a ψ-particle. The eigenstate (79) as a function of E has a pole at the
point E = Ec and its residue in this pole is the eigenstate with complex energy. Up to an
irrelevant normalization constant this state is

�G(zR, k) = λ
√

2(2π)3
∫ ∞

E0

dE′ 1

E′ − zR

|E′, k〉 − |k〉. (86)

This Gamow vector [1, 4, 5] has a clear meaning as an antilinear functional on a suitably
chosen space of test functions Φ. The test function space should be dense on the Hilbert space
(39) of the states of two ϕ-particles and one ψ-particle, which is contained in the Fock space
of the states of ϕ-particles and ψ-particles. Following the spirit of the construction for
simple non-relativistic resonances [3–5, 17], a simple choice for the test function space, dense
in the Hilbert space (39), is given by

[(H2
− ∩ S) ⊗ S(R3)] ⊕ S(R3) (87)

where

(1) H2
− is the space of Hardy functions on the lower half-plane [18].

(2) S is the space of all real-valued complex functions that are differentiable at all orders
such that they as well as their derivatives vanish at infinity faster than the inverse of any
polynomial (the one-dimensional Schwartz space).

(3) S(R3) represents the space of all complex functions on the three-dimensional real space
R3 having the same properties as S in (ii).

Then, the rigged Hilbert space is a triplet of the form Φ ⊂ H ⊂ Φ×, where Ψ× is the
dual space of Ψ. Then, Gamow vectors belong to this dual Ψ×.

A typical function in Φ has the form F(E, k)+g(k′) where F(E, k) ∈ (H2
− ∩S)⊗S(R3)

and g(k′) ∈ S(R3). The variables E and k in F(E, k) represent respectively the total energy
and the sum of the momenta for the two ϕ-particles. The variable k′ is the momentum of the
ψ-particle.

The action of the functional (86) on the function K(E, k′′, k′) := F(E, k′′) + g(k′) is
given by

〈K(E, k′′, k′)|�G(zR, k)〉 = λ
√

2(2π)3
∫ ∞

E0

dE′ 1

E′ − zR

〈F(E, k′′)|E′, k〉 − 〈g(k′)|k〉

= λ
√

2(2π)3
∫ ∞

E0

dE′ F(E, k)

E′ − zR

+ g(k). (88)

For the fixed variable k, the function F(E, k) is a Hardy function and, therefore, the integral
term of (88) converges. In the usual Fock space notation, a typical element of Φ× can be
written as

F(E, k′′)|E, k′′〉 + g(k′)|k′〉. (89)

The functional �G(zR, k) has the following property:

Has�
G(zR, k) = zR�G(zR, k). (90)

The proof of (90) goes as follows: we have seen that �(E, k) has a meromorphic extension
from above to below on the variable E with a pole at the point zR . Let us call this
extension �C(z, k). The residue of �C(z, k) at zR gives the Gamow vector �G(zR, k).
On a neighbourhood of zR one has the following expansion in terms of the complex energy z:

�C(z, k) = 1

z − zR

�G(zR, k) + regular terms. (91)
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The meromorphic extension of �(E, k) allows us to extend (46), so that we have

Has�C(z, k) = z�C(z, k) (92)

for values of the complex energy z in the lower half-plane. If we bring (92) into (91), we get

Has�
G(zR, k)

z − zR

+ regular terms = (z − z + zR)
�G(zR, k)

z − zR

+ regular terms. (93)

If we identify the pole terms on the left- and right-hand sides of (93), we finally arrive at (90).

5. A second model

Let us start this section with a system of two particles without interaction. The corresponding
state vector ψ(x1, x2) has to fulfil the following pair of equations:(

p2
1 − m2

)
ϕ(x1, x2) = 0

(
p2

2 − m2
)
ϕ(x1, x2) = 0 (94)

where pi = (
p0

i , pi

)
, i = 1, 2 is the generator of the four-dimensional translation of

coordinates xi = (
x0

i , xi

)
. Instead of the coordinates x

µ

i and p
µ

i , µ = 0, 1, 2, 3 and i = 1, 2,
we may introduce the total and relative coordinates (resp. Xµ and qµ) and the corresponding
momenta (resp. P µ and pµ)

x
µ

1 = Xµ +
1

2
qµ p

µ

1 = P µ

2
+ pµ

x
µ

2 = Xµ − 1

2
qµ p

µ

2 = P µ

2
− pµ.

(95)

These operators have the following commutation relations:

[Xµ,P ν] = [qµ, pν] = −igµν (96)

all other commutators vanish. In terms of these new operators, equations (94) become[
P 2 − (

4m2 − p2
⊥
)]

ψ(Xµ, qµ) = 0 (97)

[P · p]ψ(Xµ, qµ) = 0. (98)

Equation (97) has the meaning of a mass shell condition with a squared mass operator m2

defined by

m2 := 4m2 − p2
⊥ p

µ

⊥ := pµ − P µ P · p

P 2
. (99)

Due to (98), the system admits a one-time description [19, 20]. This system is the simplest
one among the so-called Komar–Todorov systems [21]. In the most general case, the mass
operator is a general function of (pµ, qµ), although the fact that the mass operator should
commute with P · p implies that m2 should have the following form:

m2 = m2
(
p2

⊥, q2
⊥, p⊥q⊥

)
. (100)

The one-time description for a two interacting relativistic particle system is not a trivial
matter5. The validity of this description depends on the introduction of some extra conditions,
such as for instance P · p = 0.

The relativistic wave equation for the two-particle system is given as ϕ(x1, x2) in terms
of the old spacetime coordinates and by ψ(Xµ, qµ) in terms of the new coordinates. Let us
define q2 := (x1 − x2)

2. Then, we have the following Taylor expansion:

ψ(Xµ, qµ) = ψ(Xµ, q) +
qα√
−q2

ψα(Xµ, q) +
qαqβ√

−q2
√

−q2
ψαβ(Xµ, q) + · · · (101)

5 In the classical context, see [19, 20].
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where we have used the conventional notation in the summation of indices. For s-wave states,
we may keep the term ψ0(Xµ, q) only. The conjugate variable of q is given by

p = −i
∂

∂q
.

In this approximation, the mass operator m can be given by

m2 := 4m2 + p2 = 4m2 − ∂2

∂q2
(102)

and the Klein–Gordon equation (97), in this approximation, is(
P 2 − 4m2 +

∂2

∂q2

)
ψ(Xµ, q) = 0. (103)

In (103), only the second derivative with respect to q appears. Therefore, even solutions of
(103) in q exist. In order to simplify our problem, we are going to consider these kinds of
solutions only, so that we are assuming that

ψ(Xµ,−q) = ψ(Xµ, q). (104)

We are now in a position to solve equation (103) with condition (104). The solutions are
of the following form:

ψ(Xµ, q) =
∫

dκ

∫
d3k cos κq

(2π)42E(k, κ)
(B∗(k, κ) exp(iX · k) + B(k, κ) exp(−iX · k)) (105)

where kµ = (E, k) and

E(k, κ) = [4m2 + κ2 + k2]1/2. (106)

We change the variables in (105), in order to use E as a new independent variable instead
of κ:

κ = (E2 − k2 − 4m2)1/2 dκ

E
= dE

κ
. (107)

After (107), equation (105) reads

ψ(Xµ, q) =
∫ ∞

0
dE

∫
d3k cos κ(k̃µ)q

(3π)4κ(kµ)
(B∗(k, E) exp(iX · k)

+ B(k, E) exp(−iX · k)). (108)

Following the routine of second quantization, we replace the function B(k, E) by an
operator, that we will also call B(k, E) for simplicity, and its complex conjugate B∗(k, E) by
the adjoint operator B†(k, E), satisfying the following commutation relations:

[B(k, E), B†(k, E)] = (2π)4κ(kµ)δ4(kµ − k′
µ). (109)

Thus, the function ψ(Xµ, q) becomes the operator

ψ(Xµ, q) =
∫ ∞

0
dE

∫
d3k cos κ(kµ)q

(3π)4κ(kµ)
(B†(k, E) exp(iX · k)

+ B(k, E) exp(−iX · k)). (110)

Then, we have constructed the quantum bilocal field. It is important to remark that the solution
ψ(Xµ, q) to our bilocal field somehow represents the state of two particles.

Now, we assume that this field interacts with another local quantum field ϕ(Xµ), which is
the solution of a Klein–Gordon equation with point mass equal to M. The interaction is given
by

Hint = −λ

∫
d3x

∫ ∞

−∞
dq ψ(Xµ, q)f (q)ϕ(Xµ). (111)
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The function f (q) is called the form factor and can be chosen to be a smooth even function,
as we assume in the following. If α(y) is the Fourier transform of f (q) and a(k), a†(k) are
the respective annihilation and creation operators for the local field ϕ(X), the interaction
Hamiltonian is given by

P0 =
∫

d3k dE

(2π)4κ(k, E)
EB†(k, E)B(k, E) +

∫
d3k

(2π)32ω(k)
ω(k)a†(k)a(k)

+
∫

d3k dE

(2π)32ω

λα(κ(k, E))

κ(k, E)
(a(k) + a†(−k))(B†(k, E) + B(−k, E)) (112)

and the 3-momentum is

P =
∫

d3k dE

(2π)4κ(k, E)
kB†(k, E)B(k, E) +

∫
d3k k

(2π)32ω(k)
a†(k)a(k) (113)

with

ω(k) = (k2 + M2)1/2. (114)

Remark. The bilocal field results as an approximation of the behaviour of two relativistic
interacting particles. The interaction of the bilocal field with the field ϕ(x) represents the
interaction of the two former particles with a third of fixed mass M. This is therefore a model
that approaches the behaviour of three interacting particles, just like the other one described
in the preceding sections.

The next step is to diagonalize the 4-momentum (112) and (113). This means that we are
looking for creation, b†(E, k), and annihilation, b(E, k), operators such that the 4-momentum
components Pµ can be written as

Pµ =
∫

d3k dE

(2π)4κ(E, k)
kµb†(E, k)b(E, k) (115)

where κ is given in (107). To achieve it, we pose the eigenvalue equation

[Pµ, b†(E, k)] = kµb†(E, k) (116)

where kµ = (E, k) and the Pµ are given by (112), (113). To solve (116), i.e., to obtain the
creation operators b†(E, k), we make the following ansatz:

b†(E, k) =
∫

dE′(T (E,E′, k)B†(E′, k) + R(E,E′, k)B(E′,−k))

+ t (E, k)a†(k) + r(E, k)a(−k) (117)

which obviously means that we are assuming that b†(E, k) is a linear combination of
B†(E, k), B(E, k); a†(k) and a(k). This problem was solved in [1]. The coefficients
T (E,E′, k), R(E,E′, k), t (E, k) and r(E, k) depend on the form factor f (q) in (111) and
can be written in terms of the Green function [1]

G(E, k) = 1

ω2 − E2 − �(E, k)
(118)

with

�(E, k) =
∫ ∞

E0

dE′2E′ ρ(E′, k)

E′2 − E2
(119)

and E0 = (4m2 + k2)1/2. Therefore, G(E, k) depends on

ρ(E, k) = 2π
λ2α2(κ(E, k))

κ(E, k)
(120)
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through �(E, k), since ρ(E, k) is given by equation (120). Note that ρ(E, k) depends on
α(y) which is the Fourier transform of the form factor f (q).

From (120), we see that we cannot choose the form factor f (q) arbitrarily. For instance,
if we fix f (q) ≡ 1, its Fourier transform α(y) is a Dirac delta that cannot be squared thus
making (120) meaningless. To be on the safe side, we may choose the form factor f (q) to be
a smooth (i.e., Schwartz) function.

For k fixed, the function G(E, k) is a function of the complex variable E with a cut on the
real semiaxis [E0,∞). The boundary values of the complex variable function G(E, k) from
above to below and from below to above are respectively given by G+(E, k) and G−(E, k).

The coefficients T (E,E′, k), R(E,E′, k), t (E, k) and r(E, k) in (117) depend on
G(E, k) and hence on the operator b†(E, k) and its adjoint b(E, k). If we use G+(E, k)

instead of G(E, k), we are using the so-called incoming boundary conditions. Henceforth,
we shall denote by b

†
in(E, k) and bin(E, k) the solutions of (117) and its adjoint equation,

where we have used G+(E, k) instead of G(E, k). (If instead of G+(E, k), we use G−(E, k),
we obtain the new solution b

†
out(E, k) and bout(E, k) corresponding to the outgoing boundary

conditions.)
Now, there are two possible situations. If M < 2m, the functions G+(E, k) and G−(E, k)

are analytic with no singularities on the upper and lower half-planes respectively [1]. On the
other hand, if M � 2m,G+(E, k) has a pole at E2 = k2 + µ2

c and G−(E, k) has a pole at
E2 = k2 + µ∗2

c , where the star denotes complex conjugation, and

µ2
c = µ2 − iµ�. (121)

The real and positive numbers µ and � depend on the form factor f (q).
The existence of a pole of this kind implies the presence of a metastable state (resonance)

of the system [1]. Carrying the analogy with the previous model further, the metastable state
appears when the particle of mass M can decay into the two-particle system described by the
bilocal field. The condition M � 2m is of course necessary for this process to take place.

The equation for the complex pole µc is [1]

ω2(k) − E2 −
∫

dE′2 ρ(E′, k)

E′2 − E2
= 0. (122)

For small values of the coupling constant λ, we find [1]

µ2
c = M2 − 2iπ2λ2

[
α(

√
M2 − 4m2)

]2

√
M2 − 4m2

. (123)

In order to obtain the Gamow vectors for this resonance, we have first to obtain the
vacuum � being annihilated by the operators b(E, k). This can be obtained by the vacuum
|0〉, annihilated by B(E, k) and a(k), i.e., the initial vacuum state defined by

B(E, k)|0〉 = 0 a(k)|0〉 = 0. (124)

The new vacuum � is obtained from the old vacuum |0〉 by a Bogolubov transformation [1]:

� = eV |0〉 (125)

where V depends on the creation operators B†(E, k) and a†(k). The new vacuum � has the
following property:

b(E, k)� = 0. (126)

Now, let us define

�in(E, k) = b†
in(E, k)|�〉 (127)
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which, as a function of the complex variable E, has a pole in the analytic continuation from
above to below. This pole is located at the point zR = (k2 + µ2 − iµ�)1/2 [1]. In a
neighbourhood of zR , the vector �in(E, k) has the form

�in(E, k) = 1

E − zR

ϕG
in (k) + regular part. (128)

By construction, ϕG
in (k) is the Gamow vector associated with the resonance pole zR .

Mathematically, ϕG
in (k) can be rigorously defined as a functional on a space of test vectors,

dense in the Fock space [1], so that the following properties hold:

(1) The Gamow vector ϕG
in (k) is a eigenvector of the Hamiltonian with eigenvalue zR , i.e.,

P0ϕ
G
in (k) = zRϕG

in (k). (129)

(2) It decays exponentially (in a weak sense, note that ϕG
in (k) is not in the Fock space), so that

if t � 0,

exp(−itP0)ϕ
G
in (k) = exp(−itzR)ϕG

in (k). (130)

Thus, the behaviour of the Gamow vector ϕG
in (k) is analogous to the behaviour of decaying

Gamow vectors in nonrelativistic systems [1, 3–5, 10].

6. Concluding remarks

In this paper, we have presented two models of interacting fields that could be exactly solved in
the three-particle approximation. We are assuming that one particle decays into the other two,
which are supposed to be identical for simplicity. In both cases further approximations are
required. In the first case, it is ultraviolet renormalization and in the second case, we choose
an approximation when dealing with the interaction between two particles. Once we have
made these approximations, the solution obtained is exact, because after the approximations
both models can be treated as generalized Friedrichs models, which are exactly solvable
[1, 6, 14].

These two models have a very important feature in common. When the relation between
the masses of the three particles involved allows, the system becomes unstable. We describe
these unstabilities and construct the respective Gamow vectors for unstable states.

We completely develop the first model in detail. The second model has been treated
elsewhere as an interaction between a local and a bilocal field without any reference to the
origin and motivation of such a construction [1]. In the present paper, we give and explain this
motivation, which is based on an approximation of the relativistic interaction between three
particles.
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